Data Aggregation

Once the data is generated, the data can be aggregated into specific spec formats that can later be used for tasks such as ingestion to data curation tools or fine-tuning of a pre-trained model. The formats we support are:

Below are the structures of these specs for reference:

COCO JSON

Note - This spec only supports segmentation data (when segmentation data collection is enabled). None of the other specs hold segmentation data

{
    "info": {
        "description": "DFW Takeoff-Landing Data",
        "url": "",
        "version": 1.0,
        "year": 2021,
        "contributor": "Project AirSim"
    },
    "licenses": [
        {
            "id": 0,
            "url": "/",
            "name": "Public Domain"
        }
    ],
    "images": [
        {
            "license": 0,
            "file_name": "images/0.png",
            "coco_url": "{Link to image on AML datastore}", 
            "absolute-url": "{Link to image on blob-container}",
            "height": 225,
            "width": 400,
            "id": "0",
            "date-captured": ""
        }
    ],
    "categories": [
        {
            "supercategory": "none",
            "id": 0,
            "name": "LandingPads"
        }
    ],
    "annotations": [
        {
            "segmentation": [],
            "iscrowd": 0,
            "area": 52200,
            "image_id": "0",
            "bbox": [
                0.21,
                0.0,
                0.58,
                1.0
            ],
            "category_id": 0,
            "id": "0"
        }
    ]
}

JSON

{
    "baseuri": "{blob-container URL}",
    "categories": [
        "BasicLandingPad"
    ],
    "dataset_name": "DatasetTwoTestTwo",
    "images": [
        {
            "image-width": 400,
            "image-height": 225,
            "file": {
                "hash": "",
                "key": "",
                "object-type": "File",
                "storage-type": "azure-blob",
                "uri": "0.png"
            },
            "format": ".png",
            "split": "validate",
            "polygon": [
               {"3d BBOX Data"}
            ],
            "boxes": [
                {
                    "height": 0.1111111111111111,
                    "left": 0.4375,
                    "score": 1.0,
                    "tag": "AirTaxi",
                    "top": 0.2088888888888889,
                    "width": 0.1225
                }
            ],
            "weather": "RAIN",
            "time": "2022-06-20T07:15:00",
            "geo-location": "DFW",
            "lat-lon": "33.032079,-97.284227"
        }
    ]
}

JSONL

{"image_url": "{Link to image}", "image-width": 400, "image-height": 225, "label": {"label": "AirTaxi", "isCrowd": false, "label_confidence": [1.0], "topX": 0.4375, "topY": 0.2088888888888889, "bottomX": 0.56, "bottomY": 0.32, "polygon": [[217.0, 72.0], [218.0, 57.0], [182.0, 72.0], [181.0, 57.0], [223.0, 67.0], [224.0, 47.0], [176.0, 67.0], [175.0, 47.0]]}},

CSV

ImageName

pose_x

pose_y

pose_z

roll

pitch

yaw

category

x0

y0

x1

y1

x2

y2

x3

y3

x4

y4

x5

y5

x6

y6

x7

y7

x_c

y_c

w

h

0.png

-557

5

-154

0

0

3.141592654

AirTaxi

217

72

218

57

182

72

181

57

223

67

224

47

176

67

175

47

199.5

59.5

49

25

1.png

-557.04

5

-154

0

0

3.141592654

AirTaxi

217

72

218

57

182

72

181

57

223

67

224

46

176

67

175

46

199.5

59

49

26